• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | Web of Science
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | Web of Science
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generalized Apostol Type Polynomials Based on Twin-Basic Numbers

Thumbnail

View/Open

Tam Metin / Full Text (304.8Kb)

Date

2020

Author

Duran, Uğur
Açıkgöz, Mehmet
Dutta, Hemen

Metadata

Show full item record

Citation

Duran, U., Acikgoz, M., Dutta, H. (2020). Generalized Apostol Type Polynomials Based on Twin-Basic Numbers. Communications in Mathematics and Applications, 11(1), 65-83. https://doi.org/10.26713/cma.v11i1.1327

Abstract

In this work, we consider a class of new generating function for (p, q)-analog of Apostol type polynomials of order alpha including Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials of order alpha. By making use of their generating function, we derive some useful identities. We also introduce the generating functions of (p, q)-analogues of the Stirling numbers of second kind of order tau and the Bernstein polynomials by which we construct diverse correlations including aforementioned polynomials and the (p, q)-gamma function.

Source

Communications In Mathematics and Applications

Volume

11

Issue

1

URI

https://doi.org/10.26713/cma.v11i1.1327
https://hdl.handle.net/20.500.12508/1132

Collections

  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1460]
  • Makale Koleksiyonu [91]

Related items

Showing items related by title, author, creator and subject.

  • Multifarious implicit summation formulae of Hermite-based poly-Daehee polynomials 

    Khan, Waseem Ahmad; Nisar, Kottakkaran Sooppy; Duran, Uğur; Açıkgöz, Mehmet; Aracı, Serkan (Natural Sciences Publishing USA, 2018)
    In this paper, we introduce the generating function of Hermite-based poly-Daehee numbers and polynomials. By making use of this generating function, we investigate some new and interesting identities for the Hermite-based ...
  • Apostol type (P, Q)-Frobenius-euler polynomials and numbers 

    Duran, Uğur; Açıkgöz, Mehmet (University of Kragujevac, Faculty of Science, 2018)
    In the present paper, we introduce (p, q)-extension of Apostol type Frobenius-Euler polynomials and numbers and investigate some basic identities and properties for these polynomials and numbers, including addition theorems, ...
  • Truncated Fubini polynomials 

    Duran, Uğur; Açıkgöz, Mehmet (MDPI AG, 2019)
    In this paper, we introduce the two-variable truncated Fubini polynomials and numbers and then investigate many relations and formulas for these polynomials and numbers, including summation formulas, recurrence relations, ...



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.