• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | Web of Science
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | Web of Science
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mutual Coupling Reduction of Cross-Dipole Antenna for Base Stations by Using a Neural Network Approach

Thumbnail

View/Open

Tam Metin / Full Text (2.632Mb)

Date

2020

Author

Özdemir, Ersin
Akgöl, Oğuzhan
Alkurt, Fatih Özkan
Karaaslan, Muharrem
Abdulkarim, Yadgar I.
Deng, Lianwen

Metadata

Show full item record

Citation

Ozdemir, E., Akgol, O., Alkurt, F.O., Karaaslan, M., Abdulkarim, Y.I., Deng, L. (2020). Mutual coupling reduction of cross-dipole antenna for base stations by using a neural network approach. Applied Sciences (Switzerland), 10 (1), art. no. 378. https://doi.org/10.3390/app10010378

Abstract

In this manuscript, a resonator layer is presented for the purpose of reducing the mutual coupling effect between each antenna element of a cross dipole antenna. In design processes, an artificial neural network approach was used for various resonator designs. In the operating frequency band of 2.2-2.7 GHz, 48 different 6 x 6 resonator layers were created and integrated into the cross dipole antenna to reduce transmission and improve isolation between each antenna elements. Moreover, when training an artificial neural network in the Matlab program, 48 different resonator layers were used with the return losses and transmission values of cross dipole antenna elements. After training process, eight unknown resonator designs were tested and accurate results were obtained. Finally, one of the resonator planes, which was obtained from the artificial neural network, was fabricated and experimentally tested, then an accurate result was obtained. This study provides a good solution, especially for improving isolation in multiport antenna systems, using an artificial neural network approach.

Source

Applied Sciences (Basel)

Volume

10

Issue

1

URI

https://doi.org/10.3390/app10010378
https://hdl.handle.net/20.500.12508/1144

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1420]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1460]
  • Makale Koleksiyonu [273]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.