• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Makina Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Makina Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Artificial Intelligence Applications for Friction Stir Welding: A Review

Thumbnail

View/Open

Tam Metin / Full Text (2.193Mb)

Date

2020

Author

Eren, Berkay
Güvenç, Mehmet Ali
Mıstıkoğlu, Selçuk

Metadata

Show full item record

Citation

Eren, B., Guvenc, M.A. & Mistikoglu, S. (2020). Artificial Intelligence Applications for Friction Stir Welding: A Review. Metals and Materials International. https://doi.org/10.1007/s12540-020-00854-y

Abstract

Advances in artificial intelligence (AI) techniques that can be used for different purposes have enabled it to be used in many different industrial applications. These are mainly used for modeling, identification, optimization, prediction and control of complex systems under the influence of more than one parameter in industrial applications. With the increasing accuracy of AI techniques, it has also obtained a wide application area on friction stir welding (FSW), one of the production methods developed in recent years. In this study, commonly used AI techniques for FSW, results, accuracy and superiority of AI techniques are reviewed and evaluated. In addition, an overview of AI techniques for FSW in different material combinations is provided. Considering the articles examined; It is seen that welding speed, rotational speed, the plunge depth, spindle torque, shoulder design, base material, pin design/profile, tool type are used as input parameters and tensile strength, yield strength, elongation, hardness, wear rate, welding quality, residual stress, fatigue strength are used as output parameters. As can be seen from the studies, it made important contributions in deciding what input parameters should be in order to have the output parameter at the desired value. The most common used materials for FSW are Al, Ti, Mg, Brass, Cu and so on. When FSW studies using artificial intelligence techniques were examined, it was seen that 81% of the most used materials were AL alloys and 23% of them were made with dissimilar materials. The most commonly utilized AI techniques were said to be artificial neural networks (ANN), fuzzy logic, machine learning, meta-heuristic methods and hybrid systems. As a result of the examination, ANN was the most widely used method among these methods. However, in recent years, with the exploration of new hybrid methods it was seen that hybrid systems used with ANN have higher accuracy.

Source

Metals and Materials International

URI

https://doi.org/10.1007/s12540-020-00854-y
https://hdl.handle.net/20.500.12508/1441

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1417]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1454]
  • Makale Koleksiyonu [205]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.