• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Havacılık ve Uzay Bilimleri Fakültesi
  • Havacılık ve Uzay Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Havacılık ve Uzay Bilimleri Fakültesi
  • Havacılık ve Uzay Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Multistage Cutting Tool Fault Diagnosis Algorithm for the Involute form Cutter Using Cutting Force and Vibration Signals Spectrum Imaging and Convolutional Neural Networks

Thumbnail

View/Open

Tam Metin / Full Text (2.323Mb)

Date

2021

Author

Küçükyıldız, Gürkan
Demir, Habibe Gürsoy

Metadata

Show full item record

Citation

Kucukyildiz, G., Demir, H.G. (2021). A Multistage Cutting Tool Fault Diagnosis Algorithm for the Involute form Cutter Using Cutting Force and Vibration Signals Spectrum Imaging and Convolutional Neural Networks. Arab J Sci Eng. https://doi.org/10.1007/s13369-021-05709-1

Abstract

In a machining system, tool condition monitoring systems are required to get a high-quality product and to prevent the downtime of machine tools due to tool failures. For this purpose, tool condition monitoring systems have become very important during the years since the mechanical faults can cause high cost. This study introduces a multistage cutting tool fault diagnosis method to detect the presence and level of the involute form cutter faults on the by the cutting force and vibration signal analysis. Therefore, different fault levels (low, medium and high) were generated on the involute form cutter as a tool breakage. During the experiments, the cutting force, vibration and acoustic signals were gathered with three different feed rates for each fault level. The gathered signals were processed by a multistage signal processing algorithm developed in the MATLAB environment. As an initial step, the continuous wavelet transform of the obtained signals was taken and saved as an image by the developed algorithm. After that, a convolutional neural network model is trained and tested by using the obtained images. The developed algorithm firstly checks the presence of the cutting tool fault. Once the algorithm labels the cutting tool is damaged, it then checks the damage level of the cutting tool fault. It is observed from the results, cutting force analysis is sufficient for the detection of cutting tool fault. On the other hand, the cutting force signal analysis is insufficient to detect the damage level of the cutting tool. Therefore, the vibration signal analysis is required to detect the damage level of the cutting tool. Results prove that, by the vibration analysis, the developed algorithm could detect not only the presence of the damage on the cutting tool but also the damage level. The results of the algorithm for each stage and signal are given in the results section.

Source

Arabian Journal for Science and Engineering

URI

https://doi.org/10.1007/s13369-021-05709-1
https://hdl.handle.net/20.500.12508/1719

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1419]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1456]
  • Makale Koleksiyonu [19]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.