• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • İşletme ve Yönetim Bilimleri Fakültesi
  • Yönetim Bilişim Sistemleri
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • İşletme ve Yönetim Bilimleri Fakültesi
  • Yönetim Bilişim Sistemleri
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Plant leaf disease classification using EfficientNet deep learning model

Thumbnail

View/Open

Tam Metin / Full Text (6.144Mb)

Date

2021

Author

Atilla, Ümit
Uçar, Murat
Akyol, Kemal
Uçar, Emine

Metadata

Show full item record

Citation

Atila, Ü., Uçar, M., Akyol, K., Uçar, E. (2021). Plant leaf disease classification using EfficientNet deep learning model. Ecological Informatics, 61, art. no. 101182. https://doi.org/10.1016/j.ecoinf.2020.101182

Abstract

Most plant diseases show visible symptoms, and the technique which is accepted today is that an experienced plant pathologist diagnoses the disease through optical observation of infected plant leaves. The fact that the disease diagnosis process is slow to perform manually and another fact that the success of the diagnosis is proportional to the pathologist's capabilities makes this problem an excellent application area for computer aided diagnostic systems. Instead of classical machine learning methods, in which manual feature extraction should be flawless to achieve successful results, there is a need for a model that does not need pre-processing and can perform a successful classification. In this study, EfficientNet deep learning architecture was proposed in plant leaf disease classification and the performance of this model was compared with other state-of-the-art deep learning models. The PlantVillage dataset was used to train models. All the models were trained with original and augmented datasets having 55,448 and 61,486 images, respectively. EfficientNet architecture and other deep learning models were trained using transfer learning approach. In the transfer learning, all layers of the models were set to be trainable. The results obtained in the test dataset showed that B5 and B4 models of EfficientNet architecture achieved the highest values compared to other deep learning models in original and augmented datasets with 99.91% and 99.97% respectively for accuracy and 98.42% and 99.39% respectively for precision.

Source

Ecological Informatics

URI

https://doi.org/10.1016/j.ecoinf.2020.101182
https://hdl.handle.net/20.500.12508/1754

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1420]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1460]
  • Makale Koleksiyonu [16]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.