• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Elektrik-Elektronik Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Elektrik-Elektronik Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Applying machine learning approach in recycling

Thumbnail

View/Open

Tam Metin / Full Text (3.828Mb)

Date

2021

Author

Erkınay, Özdemir Merve
Ali, Zaara
Subeshan, Balakrishnan
Asmatulu, Eylem

Metadata

Show full item record

Citation

Erkinay Ozdemir, M., Ali, Z., Subeshan, B., Asmatulu, E. (2021). Applying machine learning approach in recycling. Journal of Material Cycles and Waste Management, 23 (3), 855-871. https://doi.org/10.1007/s10163-021-01182-y

Abstract

Waste generation has been increasing drastically based on the world’s population and economic growth. This has significantly affected human health, natural life, and ecology. The utilization of limited natural resources, and the harming of the earth in the process of mineral extraction, and waste management have far exceeded limits. The recycling rate are continuously increasing; however, assessments show that humans will be creating more waste than ever before. Some difficulties during recycling include the significant expense involved during the separation of recyclable waste from non-disposable waste. Machine learning is the utilization of artificial intelligence (AI) that provides a framework to take as a structural improvement of the fact without being programmed. Machine learning concentrates on the advancement of programs that can obtain the information and use it to learn to make future decisions. The classification and separation of materials in a mixed recycling application in machine learning is a division of AI that is playing an important role for better separation of complex waste. The primary purpose of this study is to analyze AI by focusing on machine learning algorithms used in recycling systems. This study is a compilation of the most recent developments in machine learning used in recycling industries.

Source

Journal of Material Cycles and Waste Management

Volume

23

Issue

3

URI

https://doi.org/10.1007/s10163-021-01182-y
https://hdl.handle.net/20.500.12508/1762

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1420]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1460]
  • Makale Koleksiyonu [273]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.