• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
teknoversite
Öğe Göster 
  •   DSpace Ana Sayfası
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • İnşaat Mühendisliği
  • Makale Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • İnşaat Mühendisliği
  • Makale Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Compressive strength prediction models for cementitious composites with fly ash using machine learning techniques

Thumbnail

Göster/Aç

Tam Metin / Full Text (2.584Mb)

Tarih

2021

Yazar

Sevim, Umur Korkut
Bilgiç, Hasan Hüseyin
Cansız, Ömer Faruk
Öztürk, Murat
Atiş, Cengiz Duran

Üst veri

Tüm öğe kaydını göster

Künye

Sevim, U.K., Bilgic, H.H., Cansiz, O.F., Ozturk, M., Atis, C.D. (2021). Compressive strength prediction models for cementitious composites with fly ash using machine learning techniques. Construction and Building Materials, 271, art. no. 121584. https://doi.org/10.1016/j.conbuildmat.2020.121584

Özet

In this study, it was proposed a novel prediction model to predict compressive strength of mortar samples having different properties. For this purpose, 8 different fly ashes were used in mortar mixture as a replacement of cement by weight. Mortars including different ashes were prepared with addition of 10%, 20%, 30% and 40% fly ash. Compressive strength of the produced mortar samples were evaluated at 1, 3, 7, 28, 90 and 365 days. Totally 196 test samples were produced and mechanically tested. The relation between compressive strength values (dependent value) and SiO2 + Al2O3 + Fe2O3 content, age, and fly ash replacement ratios (independent values) were predicted by machine learning techniques such as Artificial Neural Networks (ANN) and Adaptive-Network Based Fuzzy Inference Systems (ANFIS). The findings were compared with traditional statistical method Multi-Linear Regression (MLR) to prove proposed models. According to test results it has an incentive effect for future studies to know that GA based Anfis model produce better results to estimate compressive strength using chemical composition of fly as in terms of SiO2 + Al2O3 + Fe2O3, fly ashsubstation ratio in the mortar and age of the sample.

Kaynak

Construction and Building Materials

Bağlantı

https://doi.org/10.1016/j.conbuildmat.2020.121584
https://hdl.handle.net/20.500.12508/1763

Koleksiyonlar

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1419]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1459]
  • Makale Koleksiyonu [205]
  • Makale Koleksiyonu [193]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@İSTE

by OpenAIRE
Gelişmiş Arama

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliİSTE Yazarına Göreİndekslendiği Kaynaklara GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliİSTE Yazarına Göreİndekslendiği Kaynaklara Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || İskenderun Teknik Üniversitesi || OAI-PMH ||

İskenderun Teknik Üniversitesi, İskenderun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
İskenderun Teknik Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.