• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • İnşaat Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • İnşaat Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Seismic metamaterials for low-frequency mechanical wave attenuation

Thumbnail

View/Open

Tam Metin / Full Text (2.579Mb)

Date

2021

Author

Kaçın, Selçuk
Öztürk, Murat
Sevim, Umur Korkut
Mert, Bayram Ali
Özer, Zafer
Akgöl, Oğuzhan
Ünal, Emin
Karaaslan, Muharrem

Metadata

Show full item record

Citation

Kacin, S., Ozturk, M., Sevim, U.K., Mert, B.A., Ozer, Z., Akgol, O., Unal, E., Karaaslan, M. (2021). Seismic metamaterials for low-frequency mechanical wave attenuation. Natural Hazards, 107 (1), pp. 213-229. https://doi.org/10.1007/s11069-021-04580-5

Abstract

In this study, a triangular array of cylindrical holes was shown to function as a local resonator to seismic metamaterials against the vibration generator loading in the geophysics concept. The field test showed that the seismic waves applied to one side of the proposed array interacted with the triangularly arranged holes, resulting in a strong attenuation in two narrow frequency bands. The numerical analysis was carried out using simulations based on the finite element method, which provides optimal dimensions and arrangement at a sub-wavelength scale to achieve maximum attenuation against incoming seismic wave at a very low frequency range. Different band gaps were observed due to interaction of the longitudinal resonance between the cylindrical holes and vertical components of soil response under the applied wave. Experimental analysis was carried out using optimum dimensions and hole arrangements, and a strong attenuation due to impedance matching between soil and seismic metamaterials was shown. It was also observed that, at very low frequencies, the soil response was due to the inverse proportionality between the resonator length and the seismic energy wavelength applied for longitudinal resonance. Two band gaps have been observed around 25–36 Hz as shown in band diagram. The proposed structure exactly prevents the seismic wave propagation at 25 Hz and 36 Hz in accordance with band diagram. Therefore, the proposed system can prevent the seismic waves from attaining the backside of the seismic array. The attenuation was obtained at a level of 0.00125, observed at a 0.0001 source point, measured by a speed sensor located at the back of the seismic metamaterials, with an attenuation rate of 12.5 at 8 Hz.

Source

Natural Hazards

Volume

107

Issue

1

URI

https://doi.org/10.1007/s11069-021-04580-5
https://hdl.handle.net/20.500.12508/1765

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1418]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1455]
  • Makale Koleksiyonu [272]
  • Makale Koleksiyonu [193]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.