• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Makina Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Makina Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Energy, exergy, economy and environmental (4E) analysis and optimization of single, dual and triple configurations of the power systems: Rankine Cycle/Kalina Cycle, driven by a gas turbine

Thumbnail

View/Open

Tam Metin / Full Text (6.197Mb)

Date

2021

Author

Köse, Özkan
Koç, Yıldız
Yağlı, Hüseyin

Metadata

Show full item record

Citation

Köse, Ö., Koç, Y., Yağlı, H. (2021). Energy, exergy, economy and environmental (4E) analysis and optimization of single, dual and triple configurations of the power systems: Rankine Cycle/Kalina Cycle, driven by a gas turbine. Energy Conversion and Management, 227, art. no. 113604. https://doi.org/10.1016/j.enconman.2020.113604

Abstract

Improving the overall efficiency of a present power system has significant importance as much as developing renewable energy systems. Because, there are many constructed power systems, which damages the environment by releasing a considerable amount of heat to the environment without use. Therefore, in the present paper, probable single, dual and triple system configurations were assessed in terms of energy, exergy and environment. In the concept of the study, a present gas turbine (GT) cycle was used as topping cycle, while the Rankine cycle (RC) and Kalina cycle (KC) were used as the bottoming cycle. For each single, dual and triple systems, the parametric optimisation of the cycles was made to find best performing system working parameters, in addition to finding probable maximum overall performances. After comprehensive analyses, recoverable heat was found as 30.74% for using single RC and 24.99% for using single KC. By designing a dual system using GT as a topping and RC as a bottoming cycle, the thermal efficiency was calculated as 41.72%. Moreover, it was concluded that 46.39% of total heat input could be recovered by the triple GT-RC-KC. By recovering the heat with these power system configurations, the maximum net power production amounts were found as 1746.80 kW with single RC, 890.14 kW with single KC, 7946.82 kW with dual GT-RC and 8836.96 kW with triple GT-RC-KC. With dual RC-KC configuration integrated to the GT, nearly 1687 tones-CO2/h reduction in CO2 emission amount was achieved. Payback periods of the RC, KC and RC-KC subsystems integrated to the GT were determined as 3.48, 3.22 and 3.39 years, respectively.

Source

Energy Conversion and Management

Volume

227

URI

https://doi.org/10.1016/j.enconman.2020.113604
https://hdl.handle.net/20.500.12508/1789

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1420]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1460]
  • Makale Koleksiyonu [205]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.