• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • İşletme ve Yönetim Bilimleri Fakültesi
  • Yönetim Bilişim Sistemleri
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • İşletme ve Yönetim Bilimleri Fakültesi
  • Yönetim Bilişim Sistemleri
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of Different Tympanic Membrane Conditions Using Fused Deep Hypercolumn Features and Bidirectional LSTM

Thumbnail

View/Open

Tam Metin / Full Text (2.131Mb)

Date

2021

Author

Uçar, Murat
Akyol, Kemal
Atila, Ümit
Uçar, Emine

Metadata

Show full item record

Citation

Uçar, M., Akyol, K., Atila, Ü., Uçar, E. (2021). Classification of Different Tympanic Membrane Conditions Using Fused Deep Hypercolumn Features and Bidirectional LSTM. IRBM. https://doi.org/10.1016/j.irbm.2021.01.001

Abstract

Objectives: Middle ear inflammatory diseases are global health problem that can have serious consequences such as hearing loss and speech disorders. The high cost of medical devices such as oto-endoscope and oto-microscope used by the specialists for the diagnosis of the disease prevents its widespread use. In addition, the decisions of otolaryngologists may differ due to the subjective visual examinations. For this reason, computer-aided middle ear disease diagnosis systems are needed to eliminate subjective diagnosis and high cost problems. To this aim, a hybrid deep learning approach was proposed for automatic recognition of different tympanic membrane conditions such as earwax plug, myringosclerosis, chronic otitis media and normal from the otoscopy images. Materials and methods: In this study we used public Ear Imagery dataset containing 880 otoscopy images. The proposed approach detects keypoints from the otoscopy images and following the obtained keypoint positions, extracts hypercolumn deep features from 5 different layers of the VGG 16 model. Classification of tympanic membrane conditions were realized by feeding the deep hypercolumn features to Bi-LSTM network in the form of non-time related data. Results: The performance of the proposed model was evaluated in three different color spaces as Red-Green-Blue (RGB), Hue-Saturation-Value (HSV) and Haematoxylin-Eosin-Diaminobenzidine (HED). The proposed model achieved acceptable results in all color spaces, moreover it showed a very successful performance in classifying tympanic membrane conditions especially in RGB space. Experimental studies showed that the proposed model achieved Acc of 99.06%, Sen of 98.13% and Spe of 99.38%. Conclusion: As a result, a robust model with high sensitivity was obtained for classification of tympanic membrane conditions and it was shown that Bi-LSTM network, which is generally used with time-related data, could also be used successfully with non-time related data for diagnosis of tympanic membrane conditions.

Source

Innovation and Research in BioMedical engineering (IRBM)

URI

https://hdl.handle.net/20.500.12508/1928
https://doi.org/10.1016/j.irbm.2021.01.001

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1417]
  • Makale Koleksiyonu [16]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.