• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Bilgisayar Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Bilgisayar Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Learning with ConvNet Predicts Imagery Tasks Through EEG

Thumbnail

View/Open

Tam Metin / Full Text (521.0Kb)

Date

2021

Author

Altan, Gökhan
Yayık, Apdullah
Kutlu, Yakup

Metadata

Show full item record

Citation

Altan, G., Yayık, A., Kutlu, Y. (2021). Deep Learning with ConvNet Predicts Imagery Tasks Through EEG. Neural Processing Letters, 53 (4), pp. 2917-2932. https://doi.org/10.1007/s11063-021-10533-7

Abstract

Deep learning with convolutional neural networks (ConvNets) has dramatically improved the learning capabilities of computer vision applications just through considering raw data without any prior feature extraction. Nowadays, there is a rising curiosity in interpreting and analyzing electroencephalography (EEG) dynamics with ConvNets. Our study focused on ConvNets of different structures, the efficiency of multiple machine learning algorithms with optimization on ConvNets, constructing for predicting imagined left and right movements on a subject-independent basis through raw EEG data. We adapted novel lower-upper triangularization based extreme learning machines (LuELM) to the ConvNet architecture. Results showed that recently advanced methods in machine learning field, i.e. adaptive moments and batch normalization together with dropout strategy, improved ConvNets predicting ability, outperforming that of conventional fully-connected neural networks with widely-used spectral features. The proposed prediction model achieved improvements in classification performances with the rates of 90.33%, 91.00%, and 89.67% for accuracy, recall, and specificity, respectively. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Source

Neural Processing Letters

Volume

53

Issue

4

URI

https://doi.org/10.1007/s11063-021-10533-7
https://hdl.handle.net/20.500.12508/1931

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1420]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1460]
  • Makale Koleksiyonu [82]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.