• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
teknoversite
Öğe Göster 
  •   DSpace Ana Sayfası
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Bilgisayar Mühendisliği
  • Makale Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Bilgisayar Mühendisliği
  • Makale Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Learning with ConvNet Predicts Imagery Tasks Through EEG

Thumbnail

Göster/Aç

Tam Metin / Full Text (521.0Kb)

Tarih

2021

Yazar

Altan, Gökhan
Yayık, Apdullah
Kutlu, Yakup

Üst veri

Tüm öğe kaydını göster

Künye

Altan, G., Yayık, A., Kutlu, Y. (2021). Deep Learning with ConvNet Predicts Imagery Tasks Through EEG. Neural Processing Letters, 53 (4), pp. 2917-2932. https://doi.org/10.1007/s11063-021-10533-7

Özet

Deep learning with convolutional neural networks (ConvNets) has dramatically improved the learning capabilities of computer vision applications just through considering raw data without any prior feature extraction. Nowadays, there is a rising curiosity in interpreting and analyzing electroencephalography (EEG) dynamics with ConvNets. Our study focused on ConvNets of different structures, the efficiency of multiple machine learning algorithms with optimization on ConvNets, constructing for predicting imagined left and right movements on a subject-independent basis through raw EEG data. We adapted novel lower-upper triangularization based extreme learning machines (LuELM) to the ConvNet architecture. Results showed that recently advanced methods in machine learning field, i.e. adaptive moments and batch normalization together with dropout strategy, improved ConvNets predicting ability, outperforming that of conventional fully-connected neural networks with widely-used spectral features. The proposed prediction model achieved improvements in classification performances with the rates of 90.33%, 91.00%, and 89.67% for accuracy, recall, and specificity, respectively. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Kaynak

Neural Processing Letters

Cilt

53

Sayı

4

Bağlantı

https://doi.org/10.1007/s11063-021-10533-7
https://hdl.handle.net/20.500.12508/1931

Koleksiyonlar

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1420]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1460]
  • Makale Koleksiyonu [82]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@İSTE

by OpenAIRE
Gelişmiş Arama

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliİSTE Yazarına Göreİndekslendiği Kaynaklara GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliİSTE Yazarına Göreİndekslendiği Kaynaklara Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || İskenderun Teknik Üniversitesi || OAI-PMH ||

İskenderun Teknik Üniversitesi, İskenderun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
İskenderun Teknik Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.