• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
teknoversite
Öğe Göster 
  •   DSpace Ana Sayfası
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Elektrik-Elektronik Mühendisliği
  • Makale Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Elektrik-Elektronik Mühendisliği
  • Makale Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Accurate Modeling of Frequency Selective Surfaces Using Fully-Connected Regression Model With Automated Architecture Determination and Parameter Selection Based on Bayesian Optimization

Thumbnail

Göster/Aç

Tam Metin / Full Text (2.509Mb)

Tarih

2021

Yazar

Çalık, Nurullah
Belen, Mehmet Ali
Mahouti, Peyman
Koziel, Slawomir

Üst veri

Tüm öğe kaydını göster

Künye

Calik, N., Belen, M.A., Mahouti, P., Koziel, S. (2021). Accurate modeling of frequency selective surfaces using fully-connected regression model with automated architecture determination and parameter selection based on bayesian optimization IEEE Access, 9, pp. 38396-38410.

Özet

Surrogate modeling has become an important tool in the design of high-frequency structures. Although full-wave electromagnetic (EM) simulation tools provide an accurate account for the circuit characteristics and performance, they entail considerable computational expenditures. Replacing EM analysis by fast surrogates provides a way to accelerate the design procedures. Unfortunately, modeling of microwave passives is a challenging task due to their highly-nonlinear outputs. Frequency selective surfaces (FSSs) constitute a representative example with their multi-resonant reflection and transmission responses that need to be represented over broad frequency ranges. Deep neural networks (DNNs) seem to be the promising techniques for handling such cases. However, a serious practical issue associated with their employment is an appropriate selection of the model parameters, including its architecture. A common practice is experience-driven setup, heavily based on trial and error, which does not guarantee the optimum model determination and may lead to multiple problems such as poor generalization or high variance of the model predictive power with respect to the training data set selection. This paper proposes a novel modeling framework, referred to as a fully-connected regression model (FCRM), where the crucial role is played by Bayesian Optimization (BO), incorporated to determine the DNN-based model setup, including both its architecture and the hyperparameter values, in a fully automated manner. For validation, FCRM is applied to construct the model of a Minkowski Fractal-Based FSS. The efficacy of the methodology is demonstrated through comparisons with several benchmark techniques, including the DNN surrogates established using the traditional methods as well as conventional regression models. The numerical results indicate that FCRM exhibits considerably improved prediction power and reduced sensitivity to the training sample assignment.

Kaynak

IEEE Access

Cilt

9

Bağlantı

https://hdl.handle.net/20.500.12508/2091

Koleksiyonlar

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1420]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1460]
  • Makale Koleksiyonu [273]

İlgili Öğeler

Başlık, yazar, küratör ve konuya göre gösterilen ilgili öğeler.

  • Low-Cost and Highly-Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates 

    Koziel, Slawomir; Çalık, Nurullah; Mahouti, Peyman; Belen, Mehmet Ali (Institute of Electrical and Electronics Engineers Inc., 2022)
    The awareness and practical benefits of behavioral modeling methods have been steadily growing in the antenna engineering community over the last decade or so. Undoubtedly, the most important advantage thereof is a possibility ...
  • Improved Modeling of Microwave Structures Using Performance-Driven Fully-Connected Regression Surrogate 

    Koziel, Slawomir; Mahouti, Peyman; Çalık, Nurullah; Belen, Mehmet Ali; Szczepanski, Stanislaw (Institute of Electrical and Electronics Engineers Inc., 2021)
    Fast replacement models (or surrogates) have been widely applied in the recent years to accelerate simulation-driven design procedures in microwave engineering. The fundamental reason is a considerable-and often prohibitive-CPU ...
  • MSDeveloper: A Variability-Guided Methodology for Microservice-Based Development 

    Dolu, Betül Kuruoğlu; Çetinkaya, Anıl; Kaya, M. Çağrı; Nazlıoğlu, Selma; Doǧru, Ali Hikmet (MDPI, 2022)
    This article presents a microservice-based development approach, MSDeveloper (Microservices Developer), employing variability management for product configuration through a low-code development environment. The purpose of ...



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@İSTE

by OpenAIRE
Gelişmiş Arama

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliİSTE Yazarına Göreİndekslendiği Kaynaklara GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliİSTE Yazarına Göreİndekslendiği Kaynaklara Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || İskenderun Teknik Üniversitesi || OAI-PMH ||

İskenderun Teknik Üniversitesi, İskenderun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
İskenderun Teknik Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.