• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Mekatronik Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Mekatronik Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adaptive neuro-fuzzy inference system combined with genetic algorithm to improve power extraction capability in fuel cell applications

Thumbnail

View/Open

Tam Metin / Full Text (3.073Mb)

Date

2021

Author

Savrun, Murat Mustafa
İnci, Mustafa

Metadata

Show full item record

Citation

Savrun, M.M., İnci, M. (2021). Adaptive neuro-fuzzy inference system combined with genetic algorithm to improve power extraction capability in fuel cell applications. Journal of Cleaner Production, 299, art. no. 126944. https://doi.org/10.1016/j.jclepro.2021.126944

Abstract

This study introduces an improved ANFIS based MPPT method to maximize the power extraction capability of the FC-connected system. The proposed method is tested in a stand-alone system that consists of an FC in the power rating of 1.9 kW, a boost dc-dc converter, local consumer load, and processor unit. The energy transfer between FC and load is handled through the adjustment of a duty cycle of the dc-dc converter. In this context, the output voltage of FC is controlled by the duty cycle to track the MPP. The proposed method called GA-ANFIS computes optimum reference voltages to control the FC output voltage optimally. The GA-ANFIS uses a reduced-size training dataset extracted by GA to train the ANFIS in comparison with conventional ANFIS. Unlike the existing methods, the proposed method tracks the MPP by merely monitoring FC voltage during operation. Besides, it performs precise MPP tracking by considering pressure & temperature variations. Thus, the proposed method provides reduced computational load owing to its current features. The performance of the proposed method compared with the traditional methods like ANFIS and PI. The power extraction ratings and efficiency values validate the viability and effectiveness of the proposed method (>98%).

Source

Journal of Cleaner Production

Volume

299

URI

https://doi.org/10.1016/j.jclepro.2021.126944
https://hdl.handle.net/20.500.12508/2093

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1420]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1460]
  • Makale Koleksiyonu [78]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.