• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
teknoversite
Öğe Göster 
  •   DSpace Ana Sayfası
  • Fakülteler
  • İşletme ve Yönetim Bilimleri Fakültesi
  • Lojistik Yönetimi
  • Makale Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Fakülteler
  • İşletme ve Yönetim Bilimleri Fakültesi
  • Lojistik Yönetimi
  • Makale Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of traffic accidents with fuzzy and crisp data mining techniques to identify factors affecting injury severity

Thumbnail

Göster/Aç

Tam Metin / Full Text (515.6Kb)

Tarih

2022

Yazar

Yaman, Tutku Tuncalı
Bilgiç, Emrah
Esen, M. Fevzi

Üst veri

Tüm öğe kaydını göster

Künye

Tuncali Yaman, T., Bilgiç, E., Fevzi Esen, M. (2022). Analysis of traffic accidents with fuzzy and crisp data mining techniques to identify factors affecting injury severity. Journal of Intelligent and Fuzzy Systems, 42 (1), pp. 575-592. https://doi.org/10.3233/JIFS-219213

Özet

Injury severity in motor vehicle traffic accidents is determined by a number of factors including driver, vehicle, and environment. Airbag deployment, vehicle speed, manner of collusion, atmospheric and light conditions, degree of ejection of occupant's body from the crash, the use of equipment or other forces to re-move occupants from the vehicle, model and type of vehicle have been considered as important risk factors affecting accident severity as well as driver-related conditions such as age, gender, seatbelt use, alcohol and drug involvement. In this study, we aim to identify important variables that contribute to injury severity in the traffic crashes. A contemporary dataset is obtained from National Highway Traffic Safety Administration's (NHTSA) Fatality Analysis Reporting System (FARS). To identify accident severity groups, we performed different clustering algorithms including fuzzy clustering. We then assessed the important factors affecting injury severity by using classification and regression trees (CRT). The results which would guide car manufacturers, policy makers and insurance companies indicate that the most important factor in defining injury severity is deployment of air-bag, followed by extrication, ejection occurrences, and travel speed and alcohol involvement.

Kaynak

Journal of Intelligent and Fuzzy Systems

Cilt

42

Sayı

1

Bağlantı

https://doi.org/10.3233/JIFS-219213
https://hdl.handle.net/20.500.12508/2199

Koleksiyonlar

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1420]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1460]
  • Makale Koleksiyonu [7]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@İSTE

by OpenAIRE
Gelişmiş Arama

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliİSTE Yazarına Göreİndekslendiği Kaynaklara GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliİSTE Yazarına Göreİndekslendiği Kaynaklara Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || İskenderun Teknik Üniversitesi || OAI-PMH ||

İskenderun Teknik Üniversitesi, İskenderun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
İskenderun Teknik Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.