• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Elektrik-Elektronik Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Elektrik-Elektronik Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Accurate Modeling of Antenna Structures by Means of Domain Confinement and Pyramidal Deep Neural Networks

Thumbnail

View/Open

Tam Metin / Full Text (3.136Mb)

Date

2022

Author

Koziel, Slawomir
Çalık, Nurullah
Mahouti, Peyman
Belen, Mehmet Ali

Metadata

Show full item record

Citation

Koziel, S., Calik, N., Mahouti, P., Belen, M.A. (2022). Accurate Modeling of Antenna Structures by Means of Domain Confinement and Pyramidal Deep Neural Networks. IEEE Transactions on Antennas and Propagation, 70 (3), pp. 2174-2188.

Abstract

The importance of surrogate modeling techniques has been gradually increasing in the design of antenna structures over the recent years. Perhaps the most important reason is a high cost of full-wave electromagnetic (EM) analysis of antenna systems. Although imperative in ensuring evaluation reliability, it entails considerable computational expenses. These are especially pronounced when carrying out EM-driven design tasks such as geometry parameter tuning or uncertainty quantification, both requiring repetitive simulations. Conducting some of the design procedures, e.g., global search or yield optimization, directly at the level of simulation models may be prohibitive. The use of fast replacement models (or surrogates) may alleviate these difficulties; yet, accurate modeling of antenna structures faces its own challenges. The two major obstacles are the curse of dimensionality, manifesting itself in a rapid growth of the number of training data samples necessary to render a reliable model (as a function of the number of antenna parameters) and high nonlinearity of antenna characteristics. Recently, the concept of performance-driven modeling has been introduced, where the modeling process is focused on a small region of the parameters' space, which contains high-quality designs with respect to the considered performance figures. The most advanced variation in this class of methods is nested kriging, where both the model domain and the surrogate itself are constructed through kriging interpolation. Domain confinement is realized using a set of preoptimized reference designs and allows for significant improvement of the model predictive power while using a limited number of training data samples. In this work, the constrained modeling concept is coupled with a novel pyramidal deep regression network (PDRN) surrogate, which offers improved handling of highly nonlinear antenna responses. Three examples of microstrip antennas are used to demonstrate the advantages of constrained PDRN metamodels over the nested kriging surrogates with the (average) accuracy improved by a factor of 2 without increasing the training dataset cardinality.

Source

IEEE Transactions on Antennas and Propagation

Volume

70

Issue

3

URI

https://ieeexplore.ieee.org/document/9538974
https://hdl.handle.net/20.500.12508/2218

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1417]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1455]
  • Makale Koleksiyonu [272]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.