• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Elektrik-Elektronik Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Elektrik-Elektronik Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Highly sensitive metamaterial-based microwave sensor for the application of milk and dairy products

Thumbnail

View/Open

Tam Metin / Full Text (19.23Mb)

Date

2022

Author

Abdulkarim, Yadgar I.
Bakır, Mehmet
Yaşar, İbrahim
Ulutaş, Hasan
Karaaslan, Muharrem
Alkurt, Fatih Özkan
Sabah, Cumali
Dong, Jian

Metadata

Show full item record

Citation

Abdulkarim, Y.I., Bakır, M., Yaşar, İ., Ulutaş, H., Karaaslan, M., Alkurt, F.Ö., Sabah, C., Dong, J. (2022). Highly sensitive metamaterial-based microwave sensor for the application of milk and dairy products. Applied Optics, 61 (8), pp. 1972-1981. https://opg.optica.org/ao/abstract.cfm?URI=ao-61-8-1972

Abstract

In this work, a novel, to the best of our knowledge, metamaterial-based microwave sensor is designed, numerically simulated, and experimentally tested for milk and dairy products in the frequency range of 8 to 9 GHz. The proposed structure is composed of copper split-ring resonators printed on Arlon Diclad 527 dielectric substrate. Reflection coefficient S11 was determined by using numerical simulation, and the structure was experimentally tested to validate the sensor at the X band frequency. The material under the test was placed in the sensor layer just behind the proposed structure, and the design was optimized to sense the change in the dielectric constant via resonance frequency shifts. The proposed study was not only used for fat contents and freshness checking of milk, it was also applied to other dairy products such as cheese, ayran, and yogurt. The maximum resonance frequency shift was observed in yogurt to be 140 MHz, and the minimum frequency shift was observed in fresh and spoiled ayran to be around 40 MHz. This work provides a new approach to the current metamaterial sensor studies existing in literature by having novel material applications with new microwave metamaterial sensors.

Source

Applied Optics

Volume

61

Issue

8

URI

https://opg.optica.org/ao/abstract.cfm?URI=ao-61-8-1972
https://doi.org/10.1364/AO.451900
https://hdl.handle.net/20.500.12508/2226

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1420]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1460]
  • Makale Koleksiyonu [273]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.