• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Bilgisayar Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Bilgisayar Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of Li-Ion Battery Discharge Patterns in IoT Devices Under Random Use Via Machine Learning Algorithms

Date

2022

Author

Gökçen, Ahmet
Gökçen, Alkım
Şahin, Savaş

Metadata

Show full item record

Citation

Gokcen, A., Gokcen, A., Sahin, S. (2022). Prediction of Li-Ion Battery Discharge Patterns in IoT Devices Under Random Use Via Machine Learning Algorithms. Computer Journal, bxac089. https://doi.org/10.1093/comjnl/bxac089

Abstract

This study presents foreseeing of the Lithium-ion battery discharge models for the Internet of Things (IoT) devices under randomized use patterns. IoT systems run in harmony with the human-machine interface, communication protocols and sharing data so long as uninterrupted data communication is exploited for their devices. Hence, forecasting the battery discharge duration is a very important issue for the regularization of IoT device performances. The well-known discharge duration is generally about the age-related electrochemical phenomena of an electrochemistry for Lithium-ion battery. The discharge changes of the battery were obtained from the input-output dynamics of the random battery use obtained from the randomized battery usage dataset in the NASA Ames prognostics data repository. They were investigated by machine learning methods and their results were estimated for life expectancy regularization of the IoT devices. In order to find the appropriate models of battery usage under randomized patterns, artificial neural network (ANN), Gaussian process and nonlinear regression models are evaluated in terms of battery capacity and internal resistance change as a function of discharged energy. The R-2, Adjusted R-2, root-mean-square-error (RMSE) and normalized-mean-square-error (NMSE) criteria were used to compare the performances of the obtained models for different settings. According to the results, ANN model, with settings of radial basis function activation function within single hidden-layer, and 20 hidden-layer neurons, shows the best performance in terms of R-2 = 1.0000 and NMSE = 1.7384.10(-4) metrics. RMSE = 0.9896.10(-4) is achieved by the ANN model with the settings of single hidden-layer with 10 neurons and hyperbolic-tangent activation function.

Source

Computer Journal

URI

https://doi.org/10.1093/comjnl/bxac089
https://hdl.handle.net/20.500.12508/2275

Collections

  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1460]
  • Makale Koleksiyonu [82]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.