• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Elektrik-Elektronik Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Elektrik-Elektronik Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

SLPred: a multi-view subcellular localization prediction tool for multi-location human proteins

Date

2022

Author

Özsarı, Gökhan
Rifaioğlu, Ahmet Süreyya
Atakan, Ahmet
Tunca, Doğan
Martin, Maria Jesus
Atalay, Rengül Çetin
Atalay, Volkan

Metadata

Show full item record

Citation

Özsarı, G., Rifaioglu, A. S., Atakan, A., Doğan, T., Martin, M. J., Çetin Atalay, R., & Atalay, V. (2022). SLPred: a multi-view subcellular localization prediction tool for multi-location human proteins. Bioinformatics (Oxford, England), 38(17), 4226–4229. https://doi.org/10.1093/bioinformatics/btac458

Abstract

Accurate prediction of the subcellular locations (SLs) of proteins is a critical topic in protein science. In this study, we present SLPred, an ensemble-based multi-view and multi-label protein subcellular localization prediction tool. For a query protein sequence, SLPred provides predictions for nine main SLs using independent machine-learning models trained for each location. We used UniProtKB/Swiss-Prot human protein entries and their curated SL annotations as our source data. We connected all disjoint terms in the UniProt SL hierarchy based on the corresponding term relationships in the cellular component category of Gene Ontology and constructed a training dataset that is both reliable and large scale using the re-organized hierarchy. We tested SLPred on multiple benchmarking datasets including our-in house sets and compared its performance against six state-of-the-art methods. Results indicated that SLPred outperforms other tools in the majority of cases.

Source

Bioinformatics

Volume

38

Issue

17

URI

https://doi.org/10.1093/bioinformatics/btac458
https://hdl.handle.net/20.500.12508/2280

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1418]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1455]
  • Makale Koleksiyonu [272]
  • PubMed İndeksli Yayınlar Koleksiyonu [140]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.