• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Makina Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Makina Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The prediction of surface roughness and tool vibration by using metaheuristic-based ANFIS during dry turning of Al alloy (AA6013)

Thumbnail

View/Open

Tam Metin / Full Text (3.644Mb)

Date

2022

Author

Güvenç, Mehmet Ali
Bilgiç, Hasan Hüseyin
Çakır, Mustafa
Mıstıkoğlu, Selçuk

Metadata

Show full item record

Citation

Guvenc, M.A., Bilgic, H.H., Cakir, M., Mistikoglu, S. (2022). The prediction of surface roughness and tool vibration by using metaheuristic-based ANFIS during dry turning of Al alloy (AA6013). Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44 (10), art. no. 474. https://doi.org/10.1007/s40430-022-03798-z

Abstract

In this article, the adaptive neuro-based fuzzy inference system (ANFIS) model is developed to estimate the surface roughness (Ra) and tool vibrations (Acc) of AA6013 aluminum alloy during dry turning. Turning experiments were carried out with seven different cutting speeds, five different feed rates and seven different depth of cuts. These three different cutting parameters were tested with each other in different variations. ANFIS model is optimized using the genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization. Performance of the developed model is compared with that of multi-linear regression model, which is one of the conventional prediction approaches. At the end of the study, it is revealed that the GA-ANFIS with an R-value of 0.946 is seen as the best model among the proposed approaches in the estimation of Acc. The PSO-ANFIS with an R-value of 0.916 is seen as the best model among the proposed approaches in the estimation of Ra. GA-ANFIS model for Acc prediction and PSO-ANFIS model for Ra prediction are the best approaches among the models discussed in the study. Moreover, the relationship between Acc and Ra values was examined and an empirical model was proposed.

Source

Journal of the Brazilian Society of Mechanical Sciences and Engineering

Volume

44

Issue

10

URI

https://doi.org/10.1007/s40430-022-03798-z
https://hdl.handle.net/20.500.12508/2336

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1420]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1460]
  • Makale Koleksiyonu [19]
  • Makale Koleksiyonu [205]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.