• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • İnşaat Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • İnşaat Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sinusoidally located concrete metastructures for attenuation of seismic surface vibrations

Thumbnail

View/Open

Tam Metin / Full Text (1.759Mb)

Date

2022

Author

Kaçın, Selçuk
Öztürk, Murat
Sevim, Umur Korkut
Karaaslan, Muharrem
Akgöl, Oğuzhan
Özer, Zafer
Demirci, Mustafa
Ünal, Emin
Mert, Bayram Ali
Alkurt, Maide Erdoğan
Alkurt, Fatih Özkan
Başar, Mustafa Tunahan
Kaya, Şeyda Gülsüm

Metadata

Show full item record

Citation

Kacin, S., Ozturk, M., Sevim, U.K. et al. Sinusoidally located concrete metastructures for attenuation of seismic surface vibrations. Nat Hazards (2022). https://doi.org/10.1007/s11069-022-05688-y

Abstract

In this numerical and experimental study, we designed sinusoidal located concrete-based boreholes which are candidate for seismic shielding applications. To attenuate seismic wave transmission in an area, proposed design is created in most dangerous part of seismic frequencies which corresponds 1-15 Hz band. Firstly, transmission loss characteristics of proposed design is obtained numerically, and it is clearly shown that proposed design has multiband blocking capability. Afterwards, total surface displacements were plotted, analysed and explained. Thus, proposed design attenuates seismic wave transmission according to numerical results. Moreover, to support proposed design, various experimental measurements were carried out by using a harmonic vibration source and 14 accelerometers as sensors. Experiments conducted in time domain and obtained results were converted to the frequency domain by fast Fourier transform, and mapping processes were done by interpolation technique. The obtained measured map of the seismic radiation between 5 and 15 Hz bands is given, and a good matching between simulations and experiments has been seen. As obtained numerical and experimental results, the proposed metamaterial structure could be used in seismic shielding applications because of its highly blocking capability of seismic wave transmission.

Source

Natural Hazards

URI

https://doi.org/10.1007/s11069-022-05688-y
https://hdl.handle.net/20.500.12508/2353

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1420]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1460]
  • Makale Koleksiyonu [273]
  • Makale Koleksiyonu [205]
  • Makale Koleksiyonu [193]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.