• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Petrol ve Doğalgaz Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Petrol ve Doğalgaz Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biochar Produced from Co-Pyrolysis of Olive Pomace & Crude Oil as an Adsorbent for Cr (VI) Removal from Aqueous Solutions

Thumbnail

View/Open

Tam Metin / Full Text (578.0Kb)

Date

2022

Author

Almezgagi, Maha
Kaya, Gülcihan Güzel
Kar, Yakup
Devci, Hüseyin

Metadata

Show full item record

Citation

Almezgagi, M., Guzel Kaya, G., Kar, Y., Devci, H. (2022). Biochar Produced from Co-Pyrolysis of Olive Pomace & Crude Oil as an Adsorbent for Cr (VI) Removal from Aqueous Solutions. Iranian Journal of Chemistry and Chemical Engineering, 41 (4), pp. 1199-1210.

Abstract

This study investigated aqueous solution treatment to remove Cr (VI) using a biochar-based adsorbent. Olive pomace and crude oil were used to synthesize the biochar adsorbent via co-pyrolysis for the first time. The biochar properties were examined with Fourier Transform Infra-Red (FT-IR) spectroscopy, scanning electron microscopy (SEM), and Energy Dispersive X-ray (EDX) analyses before and after adsorption. The adsorption experiments were carried out in a batch process under different experimental conditions. The optimum adsorption efficiency was experimentally found to be at pH of 1.5, contact time of 15 min, Cr (VI) initial concentration of 20 mg/L, adsorbent dose of 0.4 g, and 303 K. Langmuir and Freundlich isotherms were used to evaluating the adsorption performance of biochar, and the Langmuir isotherm model was well fitted to experimental data with a maximum adsorption capacity of 9 mg/g. Kinetic experimental data was best described using a pseudo-second-order kinetic model. The thermodynamic parameters of the adsorption process were examined in detail, and the process was exothermic and spontaneous in nature. It is concluded that biochar can be successfully used as an adsorbent for the treatment of Cr (VI) contaminated water. Additionally, the evaluation of olive pomace provided not only a decrease in waste accumulation in the olive production industry but also the synthesis of an inexpensive and environmentally friendly adsorbent.

Source

Iranian Journal of Chemistry and Chemical Engineering

Volume

41

Issue

4

URI

https://hdl.handle.net/20.500.12508/2417

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1420]
  • Makale Koleksiyonu [124]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.