• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Endüstri Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Endüstri Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of sports attendance: A comparative analysis

Date

2022

Author

Şahin, Mehmet
Uçar, Murat

Metadata

Show full item record

Citation

Şahin, M., Uçar, M. (2022). Prediction of sports attendance: A comparative analysis. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 236 (2), pp. 106-123. https://doi.org/10.1177/17543371209831

Abstract

In this study, a comparative analysis for predicting sports attendance demand is presented based on econometric, artificial intelligence, and machine learning methodologies. Data from more than 20,000 games from three major leagues, namely the National Basketball Association (NBA), National Football League (NFL), and Major League Baseball (MLB), were used for training and testing the approaches. The relevant literature was examined to determine the most useful variables as potential regressors in forecasting. To reveal the most effective approach, three scenarios containing seven cases were constructed. In the first scenario, each league was evaluated separately. In the second scenario, the three possible combinations of league pairings were evaluated, while in the third scenario, all three leagues were evaluated together. The performance evaluations of the results suggest that one of the machine learning methods, Gradient Boosting, outperformed the other methods used. However, the Artificial Neural Network, deep Convolutional Neural Network, and Decision Trees also provided productive and competitive predictions for sports games. Based on the results, the predictions for the NBA and NFL leagues are more satisfactory than the predictions of the MLB, which may be caused by the structure of the MLB. The results of the sensitivity analysis indicate that the performance of the home team is the most influential factor for all three leagues.

Source

Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology

Volume

236

Issue

2

URI

https://doi.org/10.1177/17543371209831
https://hdl.handle.net/20.500.12508/2421

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1420]
  • Makale Koleksiyonu [85]
  • Makale Koleksiyonu [16]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.