• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • İşletme ve Yönetim Bilimleri Fakültesi
  • Yönetim Bilişim Sistemleri
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • İşletme ve Yönetim Bilimleri Fakültesi
  • Yönetim Bilişim Sistemleri
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Stacking Ensemble Learning Approach for Intrusion Detection System

Thumbnail

View/Open

Tam Metin / Full Text (1.005Mb)

Date

2021

Author

Uçar, Murat
Uçar, Emine
İncetaş, Mürsel Ozan

Metadata

Show full item record

Citation

Uçar, M., Uçar, E. & İncetaş, M. O. (2021). A Stacking Ensemble Learning Approach for Intrusion Detection System. Duzce University Journal of Science and Technology, 9 (4), 1329-1341. https://doi.org/10.29130/dubited.737211

Abstract

Intrusion detection systems (IDSs) have received great interest in computer science, along with increased network productivity and security threats. The purpose of this study is to determine whether the incoming network traffic is normal or an attack based on 41 features in the NSL-KDD dataset. In this paper, the performance of a stacking technique for network intrusion detection was analysed. Stacking technique is an ensemble approach which is used for combining various classification methods to produce a preferable classifier. Stacking models were trained on the NSLKDD training dataset and evaluated on the NSLKDDTest+ and NSLKDDTest21 test datasets. In the stacking technique, four different algorithms were used as base learners and an algorithm was used as a stacking meta learner. Logistic Regression (LR), Decision Trees (DT), Artificial Neural Networks (ANN), and K Nearest Neighbor (KNN) are the base learner models and Support Vector Machine (SVM) model is the meta learner. The proposed models were evaluated using accuracy rate and other performance metrics of classification. Experimental results showed that stacking significantly improved the performance of intrusion detection systems. The ensemble classifier (DT-LR-ANN + SVM) model achieved the best accuracy results with 90.57% in the NSLKDDTest + dataset and 84.32% in the NSLKDDTest21 dataset.
 
Saldırı tespit sistemleri (STS'ler), artan ağ verimliliği ve güvenlik tehditlerinin yanı sıra bilgisayar bilimlerinde de büyük ilgi görmüştür. Bu çalışmanın amacı, NSL-KDD veri kümesindeki 41 özelliğe bağlı olarak gelen ağ trafiğinin, normal veya saldırı olup olmadığını belirlemektir. Bu yazıda, ağ izinsiz giriş tespiti için bir istifleme tekniğinin performansı analiz edilmiştir. İstifleme tekniği, tercih edilebilir bir sınıflandırıcı üretmek için çeşitli sınıflandırma yöntemlerini birleştirerek kullanılan bir topluluk yaklaşımıdır. İstifleme modelleri NSLKDD eğitim veri seti üzerinde eğitilmiş ve NSLKDDTest+ ve NSLKDDTest21 test veri setleri üzerinde test edilmiştir. İstifleme tekniğinde temel öğrenenler olarak dört farklı algoritma ve istifleme meta öğrenicisi olarak bir algoritma kullanılmıştır. Lojistik Regresyon (LR), Karar Ağaçları (KA), Yapay Sinir Ağları (YSA) ve K En Yakın Komşu (KEYK) temel öğrenici modelleridir ve Destek Vektör Makinesi (DVM) modeli meta öğrenicidir. Önerilen modeller, doğruluk oranı ve sınıflandırmanın diğer performans metrikleri kullanılarak değerlendirilmiştir. Deney sonuçları istiflemenin saldırı tespit sisteminin performansını önemli ölçüde artırdığını göstermiştir. Topluluk sınıflandırıcısı (KA-LR-YSA + DVM) modeli, NSLKDDTest+ veri kümesinde %90.57 ve NSLKDDTest21 veri kümesinde %84.32 ile en iyi sonuçlara ulaşmıştır.
 

Source

Düzce Üniversitesi Bilim ve Teknoloji Dergisi
Duzce University Journal of Science and Technology

Volume

9

Issue

4

URI

https://doi.org/10.29130/dubited.737211
https://dergipark.org.tr/en/pub/dubited/issue/64337/737211
https://hdl.handle.net/20.500.12508/2498

Collections

  • Araştırma Çıktıları | TR-Dizin İndeksli Yayınlar Koleksiyonu [666]
  • Makale Koleksiyonu [16]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.