Modeling and Optimization of a Peano-HASEL Actuator Peristaltic Pump
Citation
Totuk, O.H., Mistikoğlu, S. (2023). Modeling and Optimization of a Peano-HASEL Actuator Peristaltic Pump. Journal of Scientific and Industrial Research, 82 (7), pp. 776-782. https://doi.org/10.56042/jsir.v82i07.1863Abstract
Peano-Hasel (hydraulically amplified self-healing electrostatic) pumps are crucial devices with unique mechanisms and versatile applications. They simulate muscle contractions to move fluids or materials through tubes. The Peano-Hasel method, a specific design, achieves flow by compressing a segmented tube externally. Exploring the design aspects of Peano-Hasel pumps can lead to advancements in optimizing their performance, efficiency, reliability, and control systems. This paper presents a novel method of peristaltic pumping on soft pipes using Peano-HASEL actuators. In the study, a design evaluation of an external ring-type pump over a PDMS (Polydimethylsiloxane -commonly referred to as silicone) tube containing Newtonian fluids is made, and a novel multi-pouch ring shape design is proposed. Our method utilizes a peripheral and compact design that allows for more efficient sinusoidal pumping action. The close proximity of the rings in the longitudinal direction enhances the effectiveness of the pumping process. The actuator is analytically modeled and optimized for maximum areal contraction and flow rate using a differential evolution algorithm. A MATLAB Simulink Simscape model is generated, and the system is simulated. As a result, an optimal solution for the number of pouches was found to be eight, considering ring geometry and applicability. It was also seen from the simulation that a sinusoidal squeezing scheme of a ring-type pump creates the desired action. Based on the analytical model presented, it has been demonstrated that the optimal flow rate is achieved when there are eight pouches, and they are fully circular after being energized.