• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Biyomedikal Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Biyomedikal Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Comparative Study of Metaheuristic Feature Selection Algorithms for Respiratory Disease Classification

Thumbnail

View/Open

Tam Metin / Full Text (5.667Mb)

Date

2024

Author

Gürkan Kuntalp, Damla
Özcan, Nermin
Düzyel, Okan
Kababulut, Fevzi Yasin
Kuntalp, Mehmet

Metadata

Show full item record

Citation

Gürkan Kuntalp, D., Özcan, N., Düzyel, O., Kababulut, F. Y., & Kuntalp, M. (2024). A Comparative Study of Metaheuristic Feature Selection Algorithms for Respiratory Disease Classification. Diagnostics (Basel, Switzerland), 14(19), 2244. https://doi.org/10.3390/diagnostics14192244

Abstract

The correct diagnosis and early treatment of respiratory diseases can significantly improve the health status of patients, reduce healthcare expenses, and enhance quality of life. Therefore, there has been extensive interest in developing automatic respiratory disease detection systems. Most recent methods for detecting respiratory disease use machine and deep learning algorithms. The success of these machine learning methods depends heavily on the selection of proper features to be used in the classifier. Although metaheuristic-based feature selection methods have been successful in addressing difficulties presented by high-dimensional medical data in various biomedical classification tasks, there is not much research on the utilization of metaheuristic methods in respiratory disease classification. This paper aims to conduct a detailed and comparative analysis of six widely used metaheuristic optimization methods using eight different transfer functions in respiratory disease classification. For this purpose, two different classification cases were examined: binary and multi-class. The findings demonstrate that metaheuristic algorithms using correct transfer functions could effectively reduce data dimensionality while enhancing classification accuracy.

Source

Diagnostics

Volume

14

Issue

19

URI

https://doi.org/10.3390/diagnostics14192244
https://hdl.handle.net/20.500.12508/3219

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1419]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1457]
  • Makale Koleksiyonu [89]
  • PubMed İndeksli Yayınlar Koleksiyonu [140]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.