• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
teknoversite
Öğe Göster 
  •   DSpace Ana Sayfası
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Makina Mühendisliği
  • Makale Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Makina Mühendisliği
  • Makale Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deneysel bir organik Rankine çevriminde yapay sinir ağları (YSA) yardımıyla güç tahmini

Thumbnail

Göster/Aç

Tam Metin / Full Text (988.4Kb)

Tarih

2016

Yazar

Bilgiç, Hasan Hüseyin
Yağlı, Hüseyin
Koç, Ali
Yapıcı, Ahmet

Üst veri

Tüm öğe kaydını göster

Özet

Organik Rankine çevrimlerinin güç tahmini için kullanılan simülasyon programlarında; sistem elamanlarının ideal yada ideale yakın olarak kabul edilen davranışlarının, gerçek davranışlarından farklı olmasından dolayı yüksek hata oranları ortaya çıkabilmektedir. Doğrusal davranışa sahip olmayan sistemlerde Yapay Sinir Ağları yöntemi ile yapılan tahminler gerçek sonuçlara daha yakın olabilmektedir. Bu çalışmada, deneysel bir organik Rankine çevrimlerinden alınan buharlaştırıcı atık ısı giriş-çıkış sıcaklıkları ile kütlesel debisi, soğuk akışkan giriş-çıkış sıcaklıkları ile kütlesel debisi öznitelikleri kullanılarak ağ eğitilmiştir. 10 kW'lık organik Rankine çevrimi için eğitilen ağ ile güç tahmini yapılarak deneysel sonuçlar ve tahmin sonuçları karşılaştırılmıştır. Çalışma sonucunda yapay sinir ağlarından elde edilen tahmin değerleri, deneysel verilerle kıyaslanmış ve tahminin performansını gösteren korelasyon katsayısı 0.99124 olarak hesaplanmıştır. Ayrıca ağa farklı deney verilerinin girişi gerçekleştirilerek ağın tahmin başarısı kontrol edilmiştir.
 
In the simulation programs that used to estimate the power of the organic Rankine cycle; high error rates may have occurred due to accepting ideal or near-ideal behaviour differ from the actual behaviour of system components. Predictions made via artificial neural networks may be more close to actual results in the system which is of non-linear behaviour. In this study, network was trained by evaporator waste heat input- output temperatures and mass flow rate, cooling fluid input- output temperatures and mass flow rate taken from an experimental organic Rankine cycle. The power prediction was made with trained network and then the experimental and prediction results of the 10 kW organic Rankine cycle was compared. At the end of the study, the values obtained from artificial neural network were compared with experimental data and correlation coefficient which shows performance of network has calculated to be 0.99124. The prediction success of network was also checked via performing different test data input to the network.
 

Kaynak

Selçuk Üniversitesi Mühendislik Bilim ve Teknoloji Dergisi

Cilt

4

Sayı

1

Bağlantı

https://dx.doi.org/10.15317/Scitech.2016116091
https://hdl.handle.net/20.500.12508/45

Koleksiyonlar

  • Araştırma Çıktıları | TR-Dizin İndeksli Yayınlar Koleksiyonu [666]
  • Makale Koleksiyonu [205]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@İSTE

by OpenAIRE
Gelişmiş Arama

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliİSTE Yazarına Göreİndekslendiği Kaynaklara GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliİSTE Yazarına Göreİndekslendiği Kaynaklara Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || İskenderun Teknik Üniversitesi || OAI-PMH ||

İskenderun Teknik Üniversitesi, İskenderun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
İskenderun Teknik Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.