• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | Scopus
  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | Scopus
  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimation of wind energy power using different artificial intelligence techniques and empirical equations

Thumbnail

View/Open

Tam Metin / Full Text (1.667Mb)

Date

2019

Author

Mert, İlker
Üneş, Fatih
Karakuş, Cuma
Joksimovic, Darko

Metadata

Show full item record

Citation

Mert, İ., Üneş, F., Karakuş, C., Joksimovic, D. (2019). Estimation of wind energy power using different artificial intelligence techniques and empirical equations. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2019.1632981

Abstract

The understanding of the behavior of a wind turbine is difficult due to changes in weather conditions. To obtain the response of a wind turbine influenced by changes in both wind speed and its direction, using the meteorological station data is often preferred to using the real turbine data. Furthermore, simulated data can be easily extrapolated to varied turbine hub heights. In order to estimate the most effective power output in this study, a wind turbine simulation was developed. The simulation depends on the real meteorological data. For the purpose, three modeling techniques, namely Multi-Nonlinear Regression (MNLR), Adaptive Neuro-Fuzzy Inference System (ANFIS), and support vector machines (SVM) were used. In SVM learning process, polynomial and radial basis kernel functions were used. Models were compared to wind turbine measurement values in the same region for similar data. MNLR was used to determine quantify the strength of the relationship between parameters and to eliminate the ineffective parameters. Efficient parameters preferred for training and testing phases of the SVM and ANFIS. The Subtractive Clustering and Grid Partitioning methods were used to identify the inference parameters of ANFIS. According to performance evaluations, MNLR-ANFIS modeling based on Subtractive Clustering gave better results than Grid Partitioning. The results showed that proposed collaborative model could be applied to wind power estimation problems. © 2019, © 2019 Taylor & Francis Group, LLC.

Source

Energy Sources, Part A: Recovery, Utilization and Environmental Effects

URI

https://doi.org/10.1080/15567036.2019.1632981
https://hdl.handle.net/20.500.12508/462

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1420]
  • Makale Koleksiyonu [205]
  • Makale Koleksiyonu [193]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.