• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
teknoversite
Öğe Göster 
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | Scopus
  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | Scopus
  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Channel selection from EEG signals and application of support vector machine on EEG data

Thumbnail

Göster/Aç

Tam Metin / Full Text (293.1Kb)

Tarih

2017

Yazar

Arslan, Mustafa Turan
Eraldemir, Server Göksel
Yıldırım, Esen

Üst veri

Tüm öğe kaydını göster

Künye

Arslan, M.T., Eraldemir, S.G., Yildirim, E. (2017). Channel selection from EEG signals and application of support vector machine on EEG data. IDAP 2017 - International Artificial Intelligence and Data Processing Symposium, art. no. 8090226. https://doi.org/10.1109/IDAP.2017.8090226

Özet

In this study, EEG data recorded during mental arithmetic operations and silent reading were analyzed by discrete wavelet transform and feature vectors were obtained. The obtained feature vectors are classified by Support Vector Machines (SVM). Results are given for 26 channels, all recorded channels, and for 10 most effective channels. Correlation based feature selection based algorithm is used for choosing the most effective channels. Decreasing the number of channels without compromising the accuracy, is an important issue for real time applications for which a short analysis time is crucial. In this study, mental arithmetic and silent reading tasks are classified with an accuracy of 90.71%, a precision rate of 91.03% and F-measure rate of 90.63% on the average using 26 channels, whereas the accuracy, precision and F-measure were 90.44%, 90.61% and 90.08, respectively which were comparable to that of obtained using all channels, for reduced number of channels. © 2017 IEEE.

Kaynak

IDAP 2017 - International Artificial Intelligence and Data Processing Symposium

Bağlantı

https://doi.org/10.1109/IDAP.2017.8090226
https://hdl.handle.net/20.500.12508/496

Koleksiyonlar

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1420]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1460]
  • Bildiri & Sunum Koleksiyonu [1]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@İSTE

by OpenAIRE
Gelişmiş Arama

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliİSTE Yazarına Göreİndekslendiği Kaynaklara GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliİSTE Yazarına Göreİndekslendiği Kaynaklara Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || İskenderun Teknik Üniversitesi || OAI-PMH ||

İskenderun Teknik Üniversitesi, İskenderun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
İskenderun Teknik Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.