• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
teknoversite
Öğe Göster 
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | Scopus
  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | Scopus
  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimation of daily global solar radiation using deep learning model

Thumbnail

Göster/Aç

Tam Metin / Full Text (1.022Mb)

Tarih

2018

Yazar

Kaba, Kazım
Sarıgül, Mehmet
Avcı, Mutlu
Kandırmaz, H. Mustafa

Üst veri

Tüm öğe kaydını göster

Künye

Kaba, K., Sarıgül, M., Avcı, M., Kandırmaz, H.M. (2018). Estimation of daily global solar radiation using deep learning model. Energy, 162, pp. 126-135. https://doi.org/10.1016/j.energy.2018.07.202

Özet

Solar radiation (SR) is an important data for various applications such as climate, energy and engineering. Because of this, determination and estimation of temporal and spatial variability of SR has critical importance in order to make plans and organizations for the present and the future. In this study, a deep learning method is employed for estimating the SR over 30 stations located in Turkey. The astronomical factor, extraterrestrial radiation and climatic variables, sunshine duration, cloud cover, minimum temperature and maximum temperature were used as input attributes and the output was obtained as SR. The datasets of 34 stations, spanning the dates from 2001 to 2007, were used for training and testing the model, respectively, and simulated values were compared with ground-truth values. The overall coefficient of determination, root mean square error and mean absolute error were calculated as 0.980, 0.78 MJm(-2)day(-1) and 0.61 MJm(-2)day(-1), respectively. Consequently, DL model has yielded very precise and comparable results for estimating daily global SR. These results are generally better than or they are comparable to many previous studies reported in literature, so one can conclude that the method can be a good alternative and be successfully applied to similar regions. (C) 2018 Elsevier Ltd. All rights reserved.

Kaynak

Energy

Cilt

162

Bağlantı

https://doi.org/10.1016/j.energy.2018.07.202
https://hdl.handle.net/20.500.12508/621

Koleksiyonlar

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1419]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1457]
  • Makale Koleksiyonu [82]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@İSTE

by OpenAIRE
Gelişmiş Arama

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliİSTE Yazarına Göreİndekslendiği Kaynaklara GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliİSTE Yazarına Göreİndekslendiği Kaynaklara Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || İskenderun Teknik Üniversitesi || OAI-PMH ||

İskenderun Teknik Üniversitesi, İskenderun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
İskenderun Teknik Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.