• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | Scopus
  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | Scopus
  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimating the energy production of the wind turbine using artificial neural network

Thumbnail

View/Open

Tam Metin / Full Text (1.900Mb)

Date

2016

Author

Mert, İlker
Karakuş, Cuma
Üneş, Fatih

Metadata

Show full item record

Citation

Mert, İ., Karakuş, C., Üneş, F. (2016). Estimating the energy production of the wind turbine using artificial neural network. Neural Computing and Applications, 27 (5), pp. 1231-1244. https://doi.org/10.1007/s00521-015-1921-0

Abstract

Due to fluctuating weather conditions, estimating wind energy potential is still a significant problem. Artificial neural networks (ANNs) have been commonly used in short-term and just-in-time modeling of wind power generation systems based on main weather parameters such as wind speed, temperature, and humidity. Two different datasets called hourly main weather data (MWD) and daily sub-data (DSD) are used to estimate a wind turbine power generation in this study. MWD are based on historically observed wind speed, wind direction, air temperature, and pressure parameters. Besides, DSD created with statistical terms of MWD consist of maximum, minimum, mean, standard deviation, skewness, and kurtosis values. The main purpose of this study in particular was to develop a multilinear model representing the relationship between the DSD with the calculated minimum (P-min) and maximum (P-max) power generation values as well as the total power generation (P-sum) produced in a day by a wind turbine based on the MWD. While simulation values of the turbine, P-min, P-max, and P-sum, were used as the separately dependent parameters, DSD were determined as independent parameters in the estimation models. Stepwise regression was used to determine efficient independent parameters on the dependent parameters and to remove the inefficient parameters in the exploratory phaseof study. These efficient parameters and simulated power generation values were used for training and testing the developed ANN models. Accuracy test results show that interoperability framework models based on stepwise regression and the neural network models are more accurate and more reliable than a linear approach.

Source

Neural Computing and Applications

Volume

27

Issue

5

URI

https://doi.org/10.1007/s00521-015-1921-0
https://hdl.handle.net/20.500.12508/865

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1420]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1460]
  • Makale Koleksiyonu [205]
  • Makale Koleksiyonu [193]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.