• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Makina Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Makina Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Why Kalina (Ammonia-Water) cycle rather than steam Rankine cycle and pure ammonia cycle: A comparative and comprehensive case study for a cogeneration system

Thumbnail

View/Open

Tam Metin / Full Text (9.133Mb)

Date

2022

Author

Aksar, Merve
Yağlı, Hüseyin
Koç, Yıldız
Koç, Ali
Sohani, Ali
Yumrutaş, Recep

Metadata

Show full item record

Citation

Aksar, M., Yağlı, H., Koç, Y., Koç, A., Sohani, A., Yumrutaş, R. (2022). Why Kalina (Ammonia-Water) cycle rather than steam Rankine cycle and pure ammonia cycle: A comparative and comprehensive case study for a cogeneration system. Energy Conversion and Management, 265, art. no. 115739. https://doi.org/10.1016/j.enconman.2022.115739

Abstract

There are many studies on the Kalina cycle and steam Rankine cycles. However, there are not enough comparative and descriptive studies on why the Kalina cycle or steam Rankine cycle should be selected. In addition to that, almost there are no papers on why Kalina cycle and steam Rankine cycle are commonly used systems rather than the pure ammonia cycle. For these reasons, the present paper was designed, analysed and compared comprehensively the Kalina, steam Rankine and pure ammonia cycles as a subsystem for use in a cogeneration cycle. Moreover, the pure ammonia cycle system was analysed for both simple and regenerative designs to comprehensively present all cases. After deciding the best cogeneration system configuration for the present system, the economic and environmental analyses of the best performing system were performed. In addition to all these, during the study, the condensing temperature remained constant to be able to analyse systems in line with real working conditions. As a result of the comprehensive analyses, the Kalina cycle showed the best performance. The maximum net power, thermal and exergy efficiencies of the Kalina cycle were calculated at ammonia-water concertation of X = 25% and a turbine inlet temperature of t = 340 °C as 365.92 kW, 25.52%, 57.96% respectively. Thanks to the power generated by integrating the Kalina cycle into the system, 244.53 kg-CO2/h carbon dioxide was reduced and the total cost of the Kalina cycle and the payback period was found as 343,975.26$ and 2.2 years. The maximum thermal and exergy efficiencies of the Kalina cycle-based cogeneration system were calculated as 72.13% and 78.60%.

Source

Energy Conversion and Management

Volume

265

URI

https://doi.org/10.1016/j.enconman.2022.115739
https://hdl.handle.net/20.500.12508/2298

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1445]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1505]
  • Makale Koleksiyonu [208]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.