• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
teknoversite
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | Scopus
  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | Scopus
  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimation of daily global solar radiation using deep learning model

Thumbnail

View/Open

Tam Metin / Full Text (1.022Mb)

Date

2018

Author

Kaba, Kazım
Sarıgül, Mehmet
Avcı, Mutlu
Kandırmaz, H. Mustafa

Metadata

Show full item record

Citation

Kaba, K., Sarıgül, M., Avcı, M., Kandırmaz, H.M. (2018). Estimation of daily global solar radiation using deep learning model. Energy, 162, pp. 126-135. https://doi.org/10.1016/j.energy.2018.07.202

Abstract

Solar radiation (SR) is an important data for various applications such as climate, energy and engineering. Because of this, determination and estimation of temporal and spatial variability of SR has critical importance in order to make plans and organizations for the present and the future. In this study, a deep learning method is employed for estimating the SR over 30 stations located in Turkey. The astronomical factor, extraterrestrial radiation and climatic variables, sunshine duration, cloud cover, minimum temperature and maximum temperature were used as input attributes and the output was obtained as SR. The datasets of 34 stations, spanning the dates from 2001 to 2007, were used for training and testing the model, respectively, and simulated values were compared with ground-truth values. The overall coefficient of determination, root mean square error and mean absolute error were calculated as 0.980, 0.78 MJm(-2)day(-1) and 0.61 MJm(-2)day(-1), respectively. Consequently, DL model has yielded very precise and comparable results for estimating daily global SR. These results are generally better than or they are comparable to many previous studies reported in literature, so one can conclude that the method can be a good alternative and be successfully applied to similar regions. (C) 2018 Elsevier Ltd. All rights reserved.

Source

Energy

Volume

162

URI

https://doi.org/10.1016/j.energy.2018.07.202
https://hdl.handle.net/20.500.12508/621

Collections

  • Araştırma Çıktıları | Scopus İndeksli Yayınlar Koleksiyonu [1440]
  • Araştırma Çıktıları | Web of Science İndeksli Yayınlar Koleksiyonu [1500]
  • Makale Koleksiyonu [85]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@İSTE

by OpenAIRE
Advanced Search

sherpa/romeo
Dergi Adı / ISSN Yayıncı

Exact phrase only All keywords Any

Başlık İle Başlar İçerir ISSN


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed SourcesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeİSTE AuthorIndexed Sources

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Iskenderun Technical University || OAI-PMH ||

Iskenderun Technical University, İskenderun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Iskenderun Technical University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@İSTE:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.